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Abstract

Imposing consistency through proxy tasks has been
shown to enhance data-driven learning and enable self-
supervision in various tasks. This paper introduces novel
and effective consistency strategies for optical flow esti-
mation, a problem where labels from real-world data are
very challenging to derive. More specifically, we propose
occlusion consistency and zero forcing in the forms of self-
supervised learning and transformation consistency in the
form of semi-supervised learning. We apply these consis-
tency techniques in a way that the network model learns to
describe pixel-level motions better while requiring no ad-
ditional annotations. We demonstrate that our consistency
strategies applied to a strong baseline network model using
the original datasets and labels provide further improve-
ments, attaining the state-of-the-art results on the KITTI-
2015 scene flow benchmark in the non-stereo category. Our
method achieves the best foreground accuracy (4.33% in
Fl-all) over both the stereo and non-stereo categories, even
though using only monocular image inputs.

1. Introduction

Optical flow characterizes dense displacements between
corresponding pixels across images, e.g. between two con-
secutive frames in a video [9, 19, 40, 43]. It is widely em-
ployed in video analysis applications including video com-
pression [32, 46], action recognition [6, 29], video denois-
ing [3, 8], and object tracking [25, 52], to point out a few.

As important as its, optical flow estimation comes with
significant challenges. Occlusions due to camera and ob-
ject motions present one inherent difficulty, where a part
of the scene is visible in one but not in the other image of
the pair. Several methods addressed this problem by explic-
itly estimating regions to be excluded [34, 51], by applying
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Figure 1. During training, we enforce occlusion consistency with
self-supervision by applying random occlusion patterns and im-
posing the network to detect the regions under occlusion be-
tween consecutive images (It, It+1). We also employ transforma-
tion consistency (equivariance to geometric transformations) in a
semi-supervised manner for an image pair (It, It+k) and the trans-
formed pair (T (It), T (It+k)) with k ≥ 1.

self-supervision [31], or by incorporating contextual infor-
mation [43]. These methods, however, had limited reception
since they rely on multiple forward-backward iterations for
predicting occlusion areas [34, 41] or fail for larger occlu-
sions.

Obtaining precise annotations for optical flow is another
challenge that directly impacts the learning performance.
Since pixel-level motion annotation requires specialized
and costly data acquisition systems, and in many cases, such
annotations do not support high precision and spatial reso-
lution, optical flow datasets are limited in number, variety,
and degree of realism [9, 19]. The need for large-scale real-
world datasets, therefore, becomes a bottleneck.

To mitigate the annotation issues, unsupervised learn-
ing [20, 24, 34, 45] and semi-supervised learning [27, 47]
methods have been proposed in the past. Unsupervised
learning schemes, however, typically result in degraded
performance, lagging behind fully supervised learning
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counterparts [24, 30, 45]. In comparison, semi-supervised
learning [27] may offer potential performance gains with
data augmentation along with generative adversarial net-
works [14].

In this paper, we introduce two consistency strategies for
optical flow estimation to address these challenges as de-
picted in Fig. 1. First, we propose occlusion consistency that
generates a random occlusion mask, which is used to create
additional image pairs, and constrains the network to predict
the mask and a zero-forced flow field in a self-supervised
manner. Unlike other approaches, our occlusion consistency
allows generating occlusion ground truth without forward-
backward iterations. Although this intuitive strategy is sim-
ple, it enables the network not to confuse occlusion patterns
as motion indicators without losing its representative capac-
ity for the unoccluded image regions. It also helps the net-
work to derive more informative features for the partially
occluded regions within local receptive fields of the kernels
without requiring additional labeling.

We also incorporate a transformation-based consis-
tency regularization that has been shown useful in
semi-supervised image classification and object detection
tasks [21, 22, 28, 36, 42]. This strategy helps the model im-
pose equivariance through such consistency regularization.
We apply whole-image geometric transformations includ-
ing flippings, translations, and rotations. Then we restore
the transformation before evaluating the overall transfor-
mation consistency losses. While our transformation con-
sistency is derived with two passes of forward flow estima-
tion, the cycle consistency [44] is computed with one pass
of forward and the other pass of backward flow estimation.
To the best of our knowledge, this is the first attempt to
impose equivariance through consistency regularization for
optical flow estimation. Note that our approach is different
from conventional data augmentation schemes, which ex-
pand training samples without imposition of sophisticated
consistency losses during training.

Our proposed self- and semi-supervised consistency
learning strategies not only complement the previous state-
of-the-art RAFT [43] baseline, but enable significant im-
provement in the model accuracy performance as evidenced
in our experiment results. Our proposed method achieves
the new state-of-the-art accuracies and has ranked at the
top of the KITTI-2015 scene flow non-stereo leaderboard
(Ours: 4.33%, 6.01%, 3.99% vs. RAFT: 5.10%, 6.87%,
4.74% in Fl-all, Fl-fg, and Fl-bg, respectively). Our train-
ing with consistency strategies can potentially be adapted
to other dense prediction tasks.

In summary, our main contributions are as follows:
• We propose a novel occlusion consistency strategy,

which facilitates learning occlusion-robust representa-
tions efficiently in a self-supervised manner.

• We incorporate transformation consistency equivari-

ance enabling learning from a more diverse set of im-
age pairs without additional labeling.

• Applying these two consistency strategies jointly in
training and integrating an occlusion estimation chan-
nel in the architecture, our model generates superior
results over its baseline achieving state-of-the-art per-
formance in the KITTI-2015 scene flow non-stereo
monocular dataset.

2. Related Work

Optical Flow: Classic solutions have been studied for
decades [4, 15], and recent advancements have been made
with deep learning methods [9,19,37,39,43,51]. RAFT [43]
demonstrates notable improvement by extracting per-pixel
features from the corresponding image pair (It, It+1),
building multi-scale 4-dimensional correlation volumes for
all pixel pairs, and iteratively adjust the flow estimates
through a refinement module with gated recurrent units
(GRUs) [7] with repeated lookups in the correlation vol-
ume. The loss is computed between the ground truth optical
flow f(It, It+1) and the predicted optical flow f̃ i(It, It+1)
in each iteration i with `1 norm

LRAFT =

N∑
i=1

γN−i
∥∥∥f(It, It+1)− f̃ i(It, It+1)

∥∥∥
1
, (1)

where N is the number of GRU iterations and γ is a decay
factor (γ < 1). The final predicted flow is then f̃(It, It+1) =
f̃N (It, It+1), the prediction after all iterations.

Methods for Occlusion Handling: UnFlow [34] identifies
occlusions with the forward-backward constraint assump-
tion [41] and excludes the occlusion area during training.
For the forward-backward constraint, a bidirectional opti-
cal flow is required, and the errors could accumulate and
propagate, partially due to the discretization of continuous
values in the estimates. Self-supervised learning has also
been introduced in recent works for optical flow estima-
tion. SelFlow [31], as an example, performs flow estimation
for non-occluded regions and uses these predictions to es-
timate flows in occluded regions. However, it requires four
optical flow inferences (forward/backward×occlusion/non-
occlusion pairs) and significantly increases computational
and memory costs to obtain occlusion maps and non-
occlusion/occlusion flows. Maskflownet [51] proposes a
learnable occlusion mask, which is applied to the next im-
age frame It+1 when calculating the correlation between the
features of It and It+1. Recent studies [18,24] also propose
predicting the occlusion mask with an additional channel,
and we adopt this approach.

Another solution is to integrate contextual information.
Recently, RAFT [43] presented a context sub-network to
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(a) minor occlusion

(b) major occlusion

Figure 2. Illustration of occlusion problems: (a) In a case of mi-
nor occlusion, incorrect optical flow estimations for the occlusion
area can be corrected using larger spatial context (red to green).
(b) However, in a case of major occlusion, the occlusion area can
degenerate the accurately estimated optical flow of the smaller vis-
ible region (green to red)

incorporate neighborhood pixels’ information. By assum-
ing the pixels in an object or segment to have a similar flow,
it refines the estimated flow fields in occlusion areas. How-
ever, as shown in Fig. 8 (RAFT results), the matched parts
can be incorrectly updated in case of severe occlusions. We
analyze contextual information in more detail in the follow-
ing subsection.

In contrast to previous algorithms, our method generates
occlusion itself and enforces the network to predict the oc-
clusion areas without multiple inferences.1

Contextual Information: Using context to regularize esti-
mations within an image segment can improve optical flow
as [43] intended with the context sub-network. However,
such a regularization needs to be imposed while keeping the
degree of occlusion in mind. Figure 2 shows an example.
In the case of minor occlusions, most pixels (in green) in a
contextual segment (car) are likely to be estimated correctly.
Here, the context sub-network may provide adequate sup-
port over the refinement iterations. On the other hand, in the
case of major occlusions, the dominating portion of the oc-
clusion region (in red) can be biased towards incorrect con-
text, creating possibly significant deterioration in the corre-
spondence estimation. RAFT estimation in Figure 8 gives a
real example of this problem occurring under a major oc-
clusion. To tackle this problem, we propose the occlusion
consistency strategy, as described in Section 3.1.

Self-Supervised Learning: By defining pretext tasks for
unlabeled data and then using them to pretrain models, self-
supervision allows making the best use of the unlabeled
data and enhancing the performance of the downstream

1Note that our contribution is not simply adding a channel but propos-
ing a new scheme that generates and trains occlusion without occlusion
prediction.

tasks [13, 50]. In [50], the image is rotated by a random
angle, and this angle is predicted. With this auxiliary task
of rotation estimation, the network makes room for perfor-
mance improvement in the original task. However, the use
of this auxiliary task is reported to underperform in super-
vised settings while it performs better in semi-supervised
and self-supervised settings [13, 50].

Semi-Supervised Learning: Data augmentation with con-
sistency regularization has been popular in semi-supervised
learning [28, 36, 42] where a set of predefined transforma-
tions are applied to the original labeled data and the out-
puts of the perturbed inputs are enforced to agree with the
outputs of the original data [28]. The loss is defined as
the mismatch between the outputs for the original and per-
turbed inputs. It is shown that consistency regularization im-
proves robustness by smoothing the underlying data mani-
fold [36]. The consistency regularization loss and the su-
pervised loss is often aggregated. Similar ideas are also ap-
plied localization problems, and demonstrated better per-
formance [21, 22]. In our work, we extend this promising
concept to optical flow estimation.

There have also been studies on semi-supervised optical
flow estimation to reduce dependency on the labeled data.
In [27], an adversarial learning setup is used where the dis-
criminator learns whether an optical flow is real (by com-
parison with the ground truth) or generated with a model. In
the process of minimizing the discriminator loss, the gener-
ator with unlabeled data pairs is trained. In [47], clean im-
ages are generated from foggy images, and foggy images
are generated from clean images. A model is trained with
interchangeable samples among clean and foggy images.
These algorithms require additional networks to translate
images into flow estimates. In our proposal, we do not re-
quire any separate network as a part of our training frame-
work as we derive equivariance-based consistency losses
simply by comparing the original pairs with the transfor-
mation pairs.

3. Consistency for Optical Flow

Here, we summarize the notations used in this paper. We
denote the ground truth optical flow as f(It, It+k) and the
predicted optical flow as f̃(It, It+k) between two images
It and It+k that are k apart in time. Image size is w × h.
An occluded version of the original image It and its corre-
sponding occlusion mask are denoted as It,occ and Ot, re-
spectively. We denote the predicted occlusion mask as Õt.
We also use T (·) andR(·) to denote the operations of trans-
formation and transformation restoration, respectively.

The consistency strategies we describe below are applied
in a self- and semi-supervised manner, which requires no
additional ground truths.

3



3.1. Occlusion Consistency

In this subsection, we discuss two techniques in our oc-
clusion consistency strategy: zero forcing and mask match
loss.
Zero Forcing: In order to apply meaningful occlusions to
images, we define an occlusion maskOt ∈ Rw×h. We adopt
the cow-mask [10, 11] to create sufficiently random yet lo-
cally connected occlusion patterns as an occlusion could oc-
cur in any size, any shape, and at any position in an image
while exhibiting locally explainable structures. Occlusions
are mainly perpendicular to motion direction (depth discon-
tinuities) for moving objects (camera motion) around object
boundaries (scene depth discontinuities), thus occlusion re-
gions are often connected. Using self-supervised learning
with random occlusion masks enables our network to re-
spond and learn such complex occlusion structures in the
scene.

In a self-supervised manner, we apply the occlusion
mask to a single image by multiplying pixel-wise the occlu-
sion mask with the image, which allows us to obtain a new
image pair (It, It,occ) without requiring any ground truth.
Each entry of the occlusion mask Ot takes a binary value;
Ot(p) = 1 indicating a non-occluded pixel p andOt(p) = 0
corresponds to a masked pixel. We impose the flow to be
zero, i.e, f̃(It, It,occ) = 0, as there is no motion but only
occlusion. This allow us to compute the zero-forcing loss as

LZF =

N∑
i=1

γN−i
∥∥∥f̃ i(It, It,occ)∥∥∥

1
. (2)

As an enhancement to the occlusion consistency, we further
introduce a special case in which Ot = 1 (no occlusion),
meaning two images in the newly formed pair are identical,
i.e., the pair to be (It, It), which results in the new zero-
forcing loss

LZF∗ =

N∑
i=1

γN−i
∥∥∥f̃ i(It, It)∥∥∥

1
. (3)

Mask Match Loss: Since we can generate occlusion masks
automatically, our intuition is that we can also estimate
them in our network and reinforce another consistency by
matching the generated Ot and estimated Õt masks. To
achieve this, we introduce one additional channel in the out-
put of our network to estimate the occlusion status of pixels.
This also facilitates better feature correspondences for cor-
relation volumes as the network can directly access an in-
ternal occlusion mask in its layers. Furthermore, occlusion
mask estimation can be refined over iterations and along
with supervision. Therefore, we employ the zero-forcing
loss together with an occlusion mask match loss simultane-
ously and iteratively in our occlusion consistency strategy.

Figure 3. Occlusion consistency: A random mask is applied to the
original image It to construct It,occ. Then, the optical flow, as well
as the occlusion mask, are estimated for the image pair (It, It,occ).
In this case, the target ground truth is f(It, It,occ) = 0.

We define the mask match loss as

LMM =

N∑
i=1

γN−i

(
− 1

wh

∑
p

Ot(p)log(Õ
i
t(p))

)
(4)

Here, we use the cross entropy, γ and N are the same pa-
rameters as defined in (1).

3.2. Transformation Consistency

Transformation consistency strategy leverages two meth-
ods; consistency regularization and frame-hopping with
semi-supervised learning.

We apply spatial transformation consistency to the input
image pair, creating cases for enforcing equivariance be-
tween the estimated optical flow for the original pair and
the estimated optical flow for the transformed pair, in addi-
tion to the supervised loss of optical flow (See Fig. 4). In
addition, as an enhancement to this transformation consis-
tency methods, we extend the temporal gap from k = 1 to
k ≥ 1 to include pairs where the images depict larger mo-
tions. Existing datasets typically provide ground truth flow
fields f(It, It+1) only between consecutive image frames
It and It+1, while the image sampling rates may vary2 sig-
nificantly from one dataset to another. Allowing pairs with
larger frame gaps enables more versatile characterization of
underlying object and camera motion with different speeds.
Consistency Regularization: Optical flow estimations
should equivariantly change when the input images in the
pair undergo the same spatial (geometric) transformations

2For example, the frame rate of the Sintel [5] dataset is 24 frames-per-
second, while that of the KITTI [12] is 10 frames-per-second.
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Figure 4. Transformation consistency. T (It) and T (It+k) are
generated with image-wise transformations (random rotation as il-
lustrated) for the image pair (It, It+k). Optical flows f̃(It, It+k)
and f̃(T (It), T (It+k)) are computed by the same model for the
image pair and its transformed image pair. Then, the estimated
flow for the transformed pair are remapped by applying the trans-
formation restoration operation. In case we have labeled data, a
supervised loss is calculated between f̃ and the ground truth f .

that are bijective. We take advantage of this property and
impose an intuitive consistency regularization for the image
pairs during the training process. More specifically, we ap-
ply 2D image transformations, including flips and random
rotations that we observed to be effective choices, to the in-
put images and corresponding estimated optical flows.

Figure 4 shows an example for the transformation con-
sistency regularization. We transform both images It and
It+k in the pair

It, It+k
T7−→ T (It), T (It+k) (5)

and compute the optical flow for the original and trans-
formed pairs using our model. Our assumption is that af-
ter applying transformation restoration, the estimated opti-
cal flows should be equivalent

f̃(It, It+k) = R
(
f̃(T (It), T (It+k))

)
. (6)

Using this, we compute the transformation consistency loss
Ltr between f̃ and R(f̃) as follow

Ltr =
∥∥∥f̃(It, It+k)−R(f̃(T (It), T (It+k)))∥∥∥2

2
. (7)

During the initial phase of training, a larger transforma-
tion inconsistencyLtr is more likely to occur, thus the train-
ing may diverge. To alleviate this issue, we introduce an

identifier mask α (α ∈ Rw×h) as follows

αi =

{
1, if Litr < ε

0, otherwise.
(8)

Here, ε is a small positive constant, which is then used in the
final loss function to prevent the network from diverging

LTR =

N∑
i=1

γN−i · EI{αi=1}(Litr). (9)

where I{αi = 1} indicates that the expectation is fulfilled
only for the ones in mask. For iterative flow refinement, Litr
is calculated in the i-th iteration as in (7) and γ and N are
the same parameters as (1).
Frame Hopping: We also utilize frame hopping, a tech-
nique inspired by ScopeFlow [2]. Our intuition is that larger
displacements in the datasets [5,12] exist mostly near edges
of images; thus, training with samples containing larger dis-
placements can benefit model performance. Frame hopping
(for image pairs (It, It+k) with k > 1) provides not only
more training samples but also samples with larger displace-
ments to enhance learning.

3.3. Aggregated Loss

Our total loss consists of the conventional supervised
loss (Lbase), the zero-forcing loss (LZF ), the mask match
loss (LMM ), and the transformation consistency loss (LTR)
as follows:

Ltotal = Lbase + LZF + λ1LMM + λ2LTR. (10)

The supervised loss (Lbase in (1)) for labeled data and the
unsupervised loss (LZF in (2)), (LMM in (4)), and (LTR
in (9)) for unlabeled data are combined by using a balance
parameter λ1 and λ2 to derive the final loss3.

4. Experiments
Datasets & Implementation Details: In our experiments,
we have utilized the FlyingChairs (C) [9], FlyingThings3D
(T) [33], Sintel (S) [5], KITTI (K) [12, 35], and HD1K(H)
[26] datasets, which are the most popular benchmarks in the
optical flow estimation problem. More details on our experi-
mental analysis are provided in the supplementary material.

All experiments have been conducted under the same
setting with the official code of RAFT4. We followed the
same batch sizes, optimizer, number of GRU iterations,
and so on. As the number of image pairs increased in our
method, we increased the number of iterations proportion-
ally. Similar to RAFT, we pretrained our model in sequence

3Zero Forcing loss is computed with the same balance with supervised
learning.

4https://github.com/princeton-vl/RAFT
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Table 1. Optical Flow results for Sintel and KITTI. We trained the model with the Flyingchairs (C) and Flyingthings (T) datasets and tested
the model on the training dataset of the Sintel (S) and KITTI (T). For Sintel and KITTI tests, we finetuned the model with a pre-trained
model (C+T) with the Sintel, KITTI, and HD1K (H) training dataset. (Smaller numbers are better. The numbers in gray have little meaning
because they are measured on the training data. † is trained including test images without label as unlabeled data, and ‡ is trained on
KITTI-2012 and KITTI-2015 datasets. * is the results of warm-start, and § is the results of undisclosed method. )

Method Training Sintel (train-EPE) KITTI (train) Sintel (test-EPE) KITTI (test)
dataset (Clean) (Final) (Fl-epe) (Fl-all) (Clean) (Final) (Fl-all)

HD3 [49]

C+T

3.84 8.77 13.17 24.0 - - -
FlowNet2 [19] 2.02 3.54 10.08 30.0 3.96 6.02 -
PWC-Net [39] 2.55 3.93 10.35 33.7 - - -
LightFlowNet [16] 2.48 4.04 10.39 28.5 - - -
LightFlowNet2 [17] 2.24 3.78 8.97 25.9 - - -
VCN [48] 2.21 3.68 8.36 25.1 - - -
MaskFlowNet [51] 2.25 3.61 - 23.1 - - -
RAFT-small [43] 2.21 3.35 7.51 26.9 - - -
Ours (RAFT-small + OCTC) 1.95 3.13 6.53 22.1 - - -
RAFT [43] 1.43 2.71 5.04 17.4 - - -
Ours (RAFT + OCTC) 1.31 2.67 4.72 16.3 - - -
SelFlow [31] C+T+S+K 1.68 1.77 - 1.18 3.74 4.26 8.42
ScopeFlow [2] - - - - 3.59 4.10 6.82
LiteFlowNet2 [49]

C+T+S+K+H

1.30 1.62 1.47 4.8 3.48 4.69 7.62
PWC-Net+ [40] 1.71 2.34 1.50 5.3 3.45 4.60 7.72
VCN [48] 1.66 2.24 1.16 4.1 2.81 4.40 6.30
MaskFlowNet [51] - - - - 2.52 4.17 6.10
RAFT [43] 0.76 1.22 0.63 1.5 1.94/1.61* 3.18/2.86* 5.10
CRAFT [1] Undisclosed - - - - 1.45§ 2.42§ 4.79
RAFT-A [38] A+T+S+K+H - - - - 2.01/ – * 3.14/ – * 4.78
GMA [23]

C+T+S+K+H

0.62 1.06 0.57 1.2 – /1.39* – /2.47* 5.15
Ours (RAFT + OCTC) 0.73 1.23 0.67 1.7 1.82/ – * 3.09/ – * 4.72
Ours† (RAFT + OCTC) 0.74 1.24 0.71 2.0 1.58/ – * 2.95/ – * –
Ours‡ (RAFT + OCTC) - - 0.78 2.3 1.55/1.41* 2.98/2.57* 4.33

with FlyingChairs and FlyingThings3D. Since Flyingchair
samples do not have more than two consecutive images,
only self-supervised learning was applied. The parameters
are set to (λ1, λ2) = (0.1, 0.01) in (10), ε = 52 in (8), and k is
set to 2. 5 For a wide variety of random patterns in occlusion
consistency learning, we applied cowmask6 with the same
parameters used in [11]. All samples applied in our experi-
ments are from the original datasets without additional data.

Experimental Results: Table 1 shows the performances
of the proposed method and some very recent optical flow
estimation algorithms. The model trained with C+T, RAFT
reported the state-of-the-art performance previously. Nev-
ertheless, we improved its performance even further when
we applied our learning scheme OCTC (Occlusion Con-
sistency and Transformation Consistency). In addition, our
method outperformed others on the KITTI benchmark that
contains real images. Our method achieved 0.26 and 0.22

5We performed a grid search in {32, 52, 72, ∞} for ε value in Eq.8
and over the values in {1.0, 0.1, 0.01, 0.001} for each λ in Eq.10. The best
hyperparameters found were [ε = 52, (λ1, λ2) = (0.1, 0.01)]. More details
and results of these experiments are provided in Supplementary File.

6https : / / github . com / google - research / google -
research/tree/master/milking_cowmask

EPE improvements in Sintel-clean and Sintel-final, respec-
tively, in relation to RAFT-small. For the KITTI dataset,
EPE decreased by an impressive 0.98, and Fl-all decreased
by 4.8%. Using the RAFT-large model, our performance
in predicting the optical flow still attained additional im-
provements; 0.12 and 0.04 smaller EPE for Sintel-clean
and Sintel-final, and 0.32 EPE decrease and 1.1% Fl-all de-
crease for the KITTI dataset.

The bottom half of Table 1 presents the performance on
the test datasets of Sintel and KITTI. The models are trained
with the training datasets of Sintel and KITTI. For the
model trained on the Sintel dataset, the test EPE decreased
by 0.12 and 0.09 for clean and final, respectively, compared
to RAFT. For the model trained on the KITTI-2015 dataset,
the Fl-all score our model improves down to 4.72%. Fur-
thermore, we trained our model with test images without la-
bels treating them as unlabeled data. In Sintel, the test EPEs
are 1.58 and 2.95 in the clean and final versions, respec-
tively. Like MaskFlowNet, when we finetune on KITTI-
2012 and KITTI-2015 together, our model shows further
performance improvement with an Fl-all score of 4.33%,
which achieves the new state of the art on the KITTI-2015
dataset. The proposed method has a gain of about 0.77%
over the conventional RAFT model. And, when we applied

6
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Ground Truth RAFT Ours Occlusion GT Ours (Õt)

Figure 5. Qualitative results for the Sintel training set using RAFT and our RAFT+OCTC (Occlusion Consistency and Transformation
Consistency) models (trained with C+T). The first row shows that our RAFT+OCTC, which adopts frame hopping in transformation
consistency, works better for large displacements than RAFT. The second row shows that our RAFT+OCTC can predict occlusion area,
and it helps our model prevent incorrect predictions.

Image RAFT Ours

Figure 6. Qualitative results for the KITTI test set using RAFT and our RAFT+OCTC (Occlusion Consistency and Transformation Con-
sistency) models (trained with C+T+S+K+H).

our method with warm-start, it also shows the performance
improvement.

In comparison to other algorithms, our method brings ro-
bust improvements for both the Sintel and KITTI datasets.
RAFT-A [38] shows performance improvement in the
KITTI dataset, but its performance degrades in the Sintel
dataset. GMA [23] reports state-of-the-art performance in
the Sintel dataset, but its performance is not consistent; it is
worse than the baseline RAFT in the KITTI dataset.

Qualitative Results: Figure 8 provides qualitative com-
parisons on the Sintel training dataset, where the scenar-
ios of long-range movement and of large-area occlusion are
shown in the top and bottom rows, respectively. In both
scenarios, our model demonstrates improved accuracy than
the RAFT baseline, indicating the effects of our consistency
imposing strategies. Specifically, in the top row, our model
trained with frame hopping enables improved handling with
longer-range motions. In the bottom row, our RAFT+OCTC
demonstrates improved robustness with large-area occlu-
sions (see Supplementary file for more examples).

Figure 6 provides qualitative comparisons on the KITTI
test dataset, where our algorithm also demonstrates im-
proved consistency in the prediction outputs.

Table 2. Ablation study for Occlusion Consistency (OC). We
trained our models with the Flyingchairs (C) and Flyingthings (T)
datasets and tested on the training dataset of the Sintel (S) and
KITTI (T). LZF and LMM are zero-forcing loss in (2) and mask
match loss in (4), respectively.

Method (small) Additional Sintel (train-EPE) KITTI-15 (train)
Loss Clean Final Fl-epe Fl-all

RAFT (baseline) - 2.21 3.35 7.51 26.9

RAFT + OC

LZF∗ (It,It) 2.23 3.59 8.27 25.8
LZF (It,It,occ) 2.17 3.35 7.22 24.2

LMM 2.11 3.31 7.14 24.3
LZF (It,It,occ) + LMM 2.05 3.18 7.07 23.5

5. Discussion

Occlusion Consistency Terms: As shown in Table 7,
when we initially used (It, It) for zero forcing (i.e.,
identical samples as a special case without occlusions),
we observed a performance degradation possibly due to
overfitting. As we applied occlusions in one of the samples
(It, It,occ), we started to observe accuracy gains. We
noticed that the combination of LMM and zero forcing
produced remarkable performance improvements, possibly
a result of mutual learning in GRU with the simultaneous
flow and occlusion predictions in the availability of context
information.
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Table 3. Ablation study for Transformation Consistency (TC). H
and R are horizontal flips and random rotations (Other notations
are the same as Table 7)

Method (small) k Transformation Sintel (train-EPE) KITTI-15 (train)
Clean Final Fl-epe Fl-all

RAFT (baseline) - - 2.21 3.35 7.51 26.9

RAFT + TC 1,2 H 2.06 3.19 6.41 22.6
R 2.05 3.15 6.50 22.5

RAFT + TC 1,2 R 2.05 3.15 6.50 22.5
1,2,3 2.05 3.14 6.69 22.6

Table 4. Combination of Transformation Consistency with Occlu-
sion Consistency (Other notations are the same as Table 7)

Method (small) Sintel (train-EPE) KITTI-15 (train)
Clean Final Fl-epe Fl-all

RAFT (baseline) 2.21 3.35 7.51 26.9
RAFT + OC 2.05 3.18 7.07 23.5
RAFT + TC 2.05 3.15 6.50 22.5
RAFT + OC + TC 1.95 3.13 6.53 22.1

Transformation Consistency: We use horizontal
flips and random rotations in our transformation consis-
tency strategy, and we evaluate the performance in each
type of these transformations7. As shown in Table 3, the
two types of transformations show comparable accuracy
gains, although rotation works better empirically in Sintel.
Such interesting observations could be attributed to the
characteristics of data samples. For example, KITTI
image samples are typically dominated by downwards
pixel movements in the driving scenes while being quite
balanced between rightwards and leftwards movements.
This could suggest a strategy to whether apply symmetrical
generalization in vertical and horizontal directions. In
our supplemental materials, we provide some distribution
curves on several datasets.

We also experiment with a range of k values. Within
certain k ranges, both Sintel and KITTI samples produce
noticeable improvements. It is interesting, however, that
Sintel and KITTI empirically demonstrate somewhat dif-
ferent upper bounds for their most suitable k ranges, which
could be, again, attributed to the data sample characteristics
in flow distributions in vertical and horizontal directions.
Systematic analysis may provide more insights into ways
of accuracy improvements.

Combining Consistency Strategies: In Table 4, both
consistency strategies show performance improvements
over the baseline model (RAFT-small). And, applying both
methods shows better performance. Our conjecture is that
the impact of each strategy is enhanced, and generalizabil-
ity is improved with joint learning.

7Some of the transformation methods could potentially improve the
performance. Note that rotations (90◦, 180◦, and 270◦) and horizontal
flips guarantee one-to-one correspondences

Table 5. Comparisons against the RAFT baseline in accuracy,
model size, and inference time on KITTI after 24 GRU iterations.

Model KITTI # of Inference TimeFl-epe Fl-all Parameters
RAFT (small) 7.51 26.9 990,162 99.03 ms
RAFT + OCTC (small) 6.53 22.1 997,043 101.53 ms
RAFT 5.04 17.4 5,257,365 140.18 ms
RAFT + OCTC 4.72 16.3 5,263,803 143.21 ms

Transformation Restoration: We considered invert-
ing not only the displacement quantities but also the
signs and axes when restoring coordinates back from
transformation. For example, in restoring the 90◦ rotation,
we computed the inverse of the pixel location and changed
the signs and flow vector axes.

Model Size and Speed: We measure the average inference
times with KITTI dataset using Nvidia V100DX-8C GPU.
Our models significantly outperform the baseline RAFT
at only minimal model overhead as detailed in Table 5. To
support transformation consistency, there is no model size
increase. Occlusion consistency entails minor model size
increases by only 0.12% and 0.69% on large and small
models, respectively, for mask derivation, which also has a
minimal impact on inference time. Besides, during training,
our model computes the baseline and transformation
outputs sequentially without needing extra memory.

Limitations: Our algorithm could be further improved
to work for very large areas of occlusions. Besides, we
currently use only self-supervised learning in our occlusion
training with sample pairs created from individual images
(It, It,occ). Furthermore, we speculate that it could be
challenging to predict accurate optical flows in certain
low-frequency regions, where boundaries may be hidden
due to occlusion. This problem could be investigated using
an occlusion generating network with labeled data.

Another area of further research for improvement could
be an analysis on the frame rate. Beyond our methods of
consistency, zero forcing, and frame hopping, aspects such
as temporal consistency could be investigated.

6. Conclusion
In this paper, we have introduced novel and effective

consistency learning strategies, promoting occlusion con-
sistency and transformation consistency, for optical flow
estimation. We further introduce enhancements, zero forc-
ing as a special case of occlusion consistency and frame
hopping as a generalization to transformation consistency,
to our overall consistency learning framework. Applying
these methods jointly, we demonstrate empirical outperfor-
mance over the baselines. Specifically, our method sets the
new state-of-the-art performance and has ranked top in the
KITTI-2015 scene flow non-stereo leaderboards. We intend
to adapt our framework to wider tasks in our future study.
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[8] Valéry Dewil, Jérémy Anger, Axel Davy, Thibaud Ehret,
Gabriele Facciolo, and Pablo Arias. Self-supervised training
for blind multi-frame video denoising. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer
Vision, pages 2724–2734, 2021. 1

[9] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip
Hausser, Caner Hazirbas, Vladimir Golkov, Patrick Van
Der Smagt, Daniel Cremers, and Thomas Brox. Flownet:
Learning optical flow with convolutional networks. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 2758–2766, 2015. 1, 2, 5, 12

[10] Geoff French, Timo Aila, Samuli Laine, Michal Mackiewicz,
and Graham Finlayson. Semi-supervised semantic segmen-
tation needs strong, high-dimensional perturbations. arXiv
preprint arXiv:1906.01916, 2019. 4

[11] Geoff French, Avital Oliver, and Tim Salimans. Milking
cowmask for semi-supervised image classification. arXiv
preprint arXiv:2003.12022, 2020. 4, 6

[12] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel
Urtasun. Vision meets robotics: The kitti dataset. The Inter-
national Journal of Robotics Research, 32(11):1231–1237,
2013. 4, 5, 12

[13] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Un-
supervised representation learning by predicting image rota-
tions. arXiv preprint arXiv:1803.07728, 2018. 3

[14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. In Advances
in neural information processing systems, pages 2672–2680,
2014. 2

[15] Berthold KP Horn and Brian G Schunck. Determining op-
tical flow. In Techniques and Applications of Image Under-
standing, volume 281, pages 319–331. International Society
for Optics and Photonics, 1981. 2

[16] Tak-Wai Hui, Xiaoou Tang, and Chen Change Loy. Lite-
flownet: A lightweight convolutional neural network for op-
tical flow estimation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 8981–
8989, 2018. 6

[17] Tak-Wai Hui, Xiaoou Tang, and Chen Change Loy. A
lightweight optical flow cnn-revisiting data fidelity and reg-
ularization. arXiv preprint arXiv:1903.07414, 2019. 6

[18] Junhwa Hur and Stefan Roth. Iterative residual refinement
for joint optical flow and occlusion estimation. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 5754–5763, 2019. 2

[19] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper,
Alexey Dosovitskiy, and Thomas Brox. Flownet 2.0: Evolu-
tion of optical flow estimation with deep networks. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 2462–2470, 2017. 1, 2, 6

[20] Joel Janai, Fatma Guney, Anurag Ranjan, Michael Black,
and Andreas Geiger. Unsupervised learning of multi-frame
optical flow with occlusions. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pages 690–
706, 2018. 1

[21] Jisoo Jeong, Seungeui Lee, Jeesoo Kim, and Nojun Kwak.
Consistency-based semi-supervised learning for object de-
tection. In Advances in Neural Information Processing Sys-
tems, pages 10758–10767, 2019. 2, 3

[22] Jisoo Jeong, Vikas Verma, Minsung Hyun, Juho Kannala,
and Nojun Kwak. Interpolation-based semi-supervised
learning for object detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11602–11611, 2021. 2, 3

[23] Shihao Jiang, Dylan Campbell, Yao Lu, Hongdong Li,
and Richard Hartley. Learning to estimate hidden mo-
tions with global motion aggregation. arXiv preprint
arXiv:2104.02409, 2021. 6, 7

[24] Rico Jonschkowski, Austin Stone, Jonathan T Barron, Ariel
Gordon, Kurt Konolige, and Anelia Angelova. What
matters in unsupervised optical flow. arXiv preprint
arXiv:2006.04902, 2020. 1, 2

[25] Kiran Kale, Sushant Pawar, and Pravin Dhulekar. Moving
object tracking using optical flow and motion vector estima-
tion. In 2015 4th international conference on reliability, in-
focom technologies and optimization (ICRITO)(trends and
future directions), pages 1–6. IEEE, 2015. 1

[26] Daniel Kondermann, Rahul Nair, Katrin Honauer, Karsten
Krispin, Jonas Andrulis, Alexander Brock, Burkhard Gusse-
feld, Mohsen Rahimimoghaddam, Sabine Hofmann, Claus
Brenner, et al. The hci benchmark suite: Stereo and flow
ground truth with uncertainties for urban autonomous driv-
ing. In Proceedings of the IEEE Conference on Computer Vi-

9

http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=flow
http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=flow
http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=flow


sion and Pattern Recognition Workshops, pages 19–28, 2016.
5, 12

[27] Wei-Sheng Lai, Jia-Bin Huang, and Ming-Hsuan Yang.
Semi-supervised learning for optical flow with generative ad-
versarial networks. In Advances in neural information pro-
cessing systems, pages 354–364, 2017. 1, 2, 3

[28] Samuli Laine and Timo Aila. Temporal ensembling for semi-
supervised learning. arXiv preprint arXiv:1610.02242, 2016.
2, 3

[29] Myunggi Lee, Seungeui Lee, Sungjoon Son, Gyutae Park,
and Nojun Kwak. Motion feature network: Fixed motion fil-
ter for action recognition. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 387–403,
2018. 1

[30] Pengpeng Liu, Irwin King, Michael R Lyu, and Jia Xu.
Ddflow: Learning optical flow with unlabeled data distilla-
tion. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 8770–8777, 2019. 2

[31] Pengpeng Liu, Michael Lyu, Irwin King, and Jia Xu. Self-
low: Self-supervised learning of optical flow. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4571–4580, 2019. 1, 2, 6

[32] Guo Lu, Wanli Ouyang, Dong Xu, Xiaoyun Zhang, Chun-
lei Cai, and Zhiyong Gao. Dvc: An end-to-end deep video
compression framework. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
11006–11015, 2019. 1

[33] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer,
Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox. A
large dataset to train convolutional networks for disparity,
optical flow, and scene flow estimation. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 4040–4048, 2016. 5, 12

[34] Simon Meister, Junhwa Hur, and Stefan Roth. Unflow: Un-
supervised learning of optical flow with a bidirectional cen-
sus loss. arXiv preprint arXiv:1711.07837, 2017. 1, 2

[35] Moritz Menze and Andreas Geiger. Object scene flow for au-
tonomous vehicles. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 3061–
3070, 2015. 5, 12

[36] Avital Oliver, Augustus Odena, Colin A Raffel, Ekin Dogus
Cubuk, and Ian Goodfellow. Realistic evaluation of deep
semi-supervised learning algorithms. In Advances in neural
information processing systems, pages 3235–3246, 2018. 2,
3

[37] Anurag Ranjan and Michael J Black. Optical flow estima-
tion using a spatial pyramid network. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 4161–4170, 2017. 2

[38] Deqing Sun, Daniel Vlasic, Charles Herrmann, Varun
Jampani, Michael Krainin, Huiwen Chang, Ramin Zabih,
William T Freeman, and Ce Liu. Autoflow: Learning a better
training set for optical flow. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 10093–10102, 2021. 6, 7

[39] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz.
Pwc-net: Cnns for optical flow using pyramid, warping, and

cost volume. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 8934–8943,
2018. 2, 6

[40] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz.
Models matter, so does training: An empirical study of cnns
for optical flow estimation. IEEE transactions on pattern
analysis and machine intelligence, 42(6):1408–1423, 2019.
1, 6

[41] Narayanan Sundaram, Thomas Brox, and Kurt Keutzer.
Dense point trajectories by gpu-accelerated large displace-
ment optical flow. In European conference on computer vi-
sion, pages 438–451. Springer, 2010. 1, 2

[42] Antti Tarvainen and Harri Valpola. Mean teachers are better
role models: Weight-averaged consistency targets improve
semi-supervised deep learning results. In Advances in neural
information processing systems, pages 1195–1204, 2017. 2,
3

[43] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field
transforms for optical flow. In European Conference on
Computer Vision, pages 402–419. Springer, 2020. 1, 2, 3,
6, 12

[44] Xiaolong Wang, Allan Jabri, and Alexei A Efros. Learning
correspondence from the cycle-consistency of time. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 2566–2576, 2019. 2

[45] Yang Wang, Yi Yang, Zhenheng Yang, Liang Zhao, Peng
Wang, and Wei Xu. Occlusion aware unsupervised learn-
ing of optical flow. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 4884–
4893, 2018. 1, 2

[46] Chao-Yuan Wu, Nayan Singhal, and Philipp Krahenbuhl.
Video compression through image interpolation. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), pages 416–431, 2018. 1

[47] Wending Yan, Aashish Sharma, and Robby T Tan. Optical
flow in dense foggy scenes using semi-supervised learning.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 13259–13268, 2020.
1, 3

[48] Gengshan Yang and Deva Ramanan. Volumetric correspon-
dence networks for optical flow. In Advances in neural in-
formation processing systems, pages 794–805, 2019. 6

[49] Zhichao Yin, Trevor Darrell, and Fisher Yu. Hierarchical dis-
crete distribution decomposition for match density estima-
tion. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 6044–6053, 2019. 6

[50] Xiaohua Zhai, Avital Oliver, Alexander Kolesnikov, and Lu-
cas Beyer. S4l: Self-supervised semi-supervised learning. In
Proceedings of the IEEE international conference on com-
puter vision, pages 1476–1485, 2019. 3

[51] Shengyu Zhao, Yilun Sheng, Yue Dong, Eric I Chang, Yan
Xu, et al. Maskflownet: Asymmetric feature matching with
learnable occlusion mask. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 6278–6287, 2020. 1, 2, 6

[52] Huizhong Zhou, Benjamin Ummenhofer, and Thomas Brox.
Deeptam: Deep tracking and mapping. In Proceedings of

10



the European conference on computer vision (ECCV), pages
822–838, 2018. 1

11



7. Appendix

7.1. Datasets:

In our experiments, we have utilized the FlyingChairs
(C) [9], FlyingThings3D (T) [33], Sintel (S) [5], and KITTI
(K) [12, 35] datasets which are the most popular datasets in
the optical flow estimation problem. FlyingChairs [9] con-
sist of 22,872 image pairs and the corresponding ground
truths. It is composed of individual pairs, so we cannot con-
stitute additional image pairs corresponding to k > 1. Fly-
ingThings3D [33] consists of a training dataset of 21,818
images and a test dataset of 4,248 images. The images
of FlyingThings3D consist of more than two consecutive
frames, which have both the forward optical flow (20,151
pairs) and the backward optical flow (20,151 pairs) ground
truth. In addition, this and Sintel datasets are categorized
into clean pass and final pass, and the final pass is applied
a post-processing such as fog impact, motion blur, and so
on. Therefore, the number of pairs in the training set of Fly-
ingThings3D dataset increases to 80,604. Sintel [5] consists
of a training dataset of 1,064 images and a test dataset of
564 images. Sintel is also composed of more than two con-
secutive frames, and as mentioned above, it is composed of
a clean pass and a final pass. KITTI [12, 35] consists of a
training dataset of 400 images and a test dataset of 400 im-
ages. HD1K [26] consists of 1,083 images. These are com-
posed of individual pairs same as FlyingChairs, so there are
200 pairs in both training and test datasets.
Table 6. We perform hyperparameter search over a grid of λ1

∈ {1.0, 0.1, 0.01, 0.001} in Eq.10. We trained the model with
the Flyingchairs (C) and Flyingthings (T) datasets and tested the
model on the training dataset of the Sintel (S) and KITTI (T).

Method λ2
Sintel (train-EPE) KITTI-15 (train)

(small) Clean Final F1-epe F1-all
RAFT - 2.21 3.35 7.51 26.9

RAFT + OC

1.0 2.48 3.60 8.57 27.6
0.1 2.05 3.18 7.07 23.5

0.01 2.19 3.24 7.41 23.6
0.001 2.24 3.26 7.52 25.0

Table 7. We perform hyperparameter search over a grid of λ2 ∈
{1.0, 0.1, 0.01, 0.001} in Eq.10. The parameters are set to Trans-
formation = R, ε = 25.0, and k = 1,2. We trained the model with
the Flyingchairs (C) and Flyingthings (T) datasets and tested the
model on the training dataset of the Sintel (S) and KITTI (T).

Method λ1 Sintel (train-EPE) KITTI-15 (train)
(small) Clean Final F1-epe F1-all
RAFT - 2.21 3.35 7.51 26.9

RAFT + TC

1.0 3.05 3.87 13.41 34.7
0.1 2.06 3.23 7.16 23.3
0.01 2.05 3.15 6.50 22.5

0.001 2.05 3.20 6.47 22.7

Table 8. We perform hyperparameter search over a grid of epsilon
ε ∈ {32, 52, 72, ∞} in Eq.8 under Transformation Consistency
setting. The parameters in Transformation Consistency are set to
λ2 = 0.01, Transformation = R, and k = 1,2. We trained the model
with the Flyingchairs (C) and Flyingthings (T) datasets and tested
the model on the training dataset of the Sintel (S) and KITTI (T).

Method ε Sintel (train-EPE) KITTI-15 (train)
(small) Clean Final F1-epe F1-all
RAFT - 2.21 3.35 7.51 26.9

RAFT + TC

32 2.09 3.19 6.46 22.5
52 2.05 3.15 6.50 22.5
72 2.04 3.16 6.63 22.6
∞ 2.09 3.18 6.91 22.9

7.2. Implementation Details:

The codes used for our experiments are based on Py-
torch, and we have used the official code8 for RAFT [43].
Our method introduces three additional hyper parameters,
namely, (λ1, λ2) of Eq.10 and ε of Eq.8. We performed a
grid search over the values in {1.0, 0.1, 0.01, 0.001} for
each λ in Eq.10 and in {32, 52, 72,∞} for ε value in Eq.8.
In table 6, our model with occlusion consistency shows best
performance at λ1 = 0.1. For transformation consistency,
our model shows superior scores in most evaluations at λ2
= 0.01. In case of the ε, our transformation consistency loss
has shown good performance in Sintel dataset with (52 and
72 for ε) and in KITTI dataset with (32 and 52 for ε). There-
fore, we set the parameters to be [(λ1, λ2) = (0.1, 0.01), ε =
52].

8https://github.com/princeton-vl/RAFT
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7.3. Dataset Characterization with Displacement Distributions

Fig. 7 below shows cumulative density functions (CDFs) of the ground truth displacements for four popular optical flow
datasets. In each plot, we accumulate displacement values symmetrically from −100 to 100 for individual dimensions of
(u, v), corresponding to the X and Y axes, excluding larger displacements as outliers. For the FlyingChair dataset, the figure
shows that most of the samples are near zero with a relatively small variance. The FlyingThings3D dataset, instead, shows
a larger variance than FlyingChair and Sintel. In addition, KITTI appears to have a larger variance than the other datasets,
possibly due in part to its smaller frame rates used in this dataset. Another interesting observation from the figures is that,
unlike other datasets, KITTI demonstrates significant asymmetry in the flow distribution on the Y axis, as the images are
probably dominated by downward movements in the images captured with frontal views of the vehicles.

FlyingChairs FlyingThings3D

u v u v

Sintel KITTI

u v u v

Figure 7. Cumulative Density Functions (CDFs) of displacements in popular datasets. In each pair of sub-figures, the left and rigtht sub-
figures show displacements on the X (u) and Y (v) axes, respectively.
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7.4. Performance Comparisons with More Examples

In the figure on the next page, we provide performance comparison with additional examples in a range of various EPEs
from low to high.

Figure 8. More performance comparisons between the baseline (RAFT) and Ours (RAFT-OCTC) on Sintel train samples (trained with
C+T).
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